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A variety of numerical techniques are available for tracking moving interfaces.
In this review, we concentrate on techniques that result from the link between the
partial differential equations that describe moving interfaces and numerical schemes
designed for approximating the solutions to hyperbolic conservation laws. This link
gives rise to computational techniques for tracking moving interfaces in two and
three space dimensions under complex speed laws. We discuss the evolution of these
techniques, the fundamental numerical approximations, involved, implementation
details, and applications. In particular, we review some work on three aspects of ma-
terials sciences: semiconductor process simulations, seismic processing, and optimal
structural topology design. c© 2001 Academic Press

1. Overview and Introduction

A large number of computational problems and physical phenomena involve the motion
of interfaces separating two or more regions. These include problems in such areas as fluid
mechanics, combustion, materials science, meteorology, and computer vision. In these
problems, challenging issues often involve:

• interfaces that change topology, break, and merge as they move;
• formation of sharp corners, cusps, and singularities;
• dependence of the interface motion on delicate geometric quantities such as curvature

and normal direction;
• complexities in three dimensions and higher; and
• subtle feedback between the physics and chemistry off the interface and the position

and motion of the front itself.

1 This work was supported in part by the Applied Mathematical Science subprogram of the Office of Energy
Research, U.S. Department of Energy, under Contract Number DE-AC03-76SF00098, and the Office of Naval
Research under grant FDN00014-96-1-0381.
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One approach to formulating, modeling, and building computational techniques for some
aspects of these problems is provided by level set methods. These techniques work by
embedding the propagating interface as the zero level set of a time-dependent, implicit
function, and then solving the resulting equations of motion in a fixed-grid Eulerian setting.
They have been used with considerable success in a wide collection of settings, including
fluid mechanics, crystal growth, combustion, and medical imaging. A general overview of
the theory, numerical approximation, and range of applications may be found in [81].

Level set methods, introduced by Osher and Sethian [56], rely in part on the theory of
curve and surface evolution given in [69] and on the link between front propagation and
hyperbolic conservation laws discussed in [70]. They recast interface motion as a time-
dependent Eulerian initial value partial differential equation, and they rely on viscosity
solutions to the appropriate differential equations to update the position of the front, using
an interface velocity that is derived from the relevant physics both on and off the interface.
These viscosity solutions are obtained by exploiting schemes from the numerical solution
of hyperbolic conservation laws. Level set methods are specifically designed for problems
involving topological change, dependence on curvature, formation of singularities, and the
host of other issues that often appear in interface propagation techniques. Over the past few
years, various aspects of these techniques have been refined to the point where a general
computational approach to arbitrary front propagation problems is available. This general
computational approach allows one to track the motion of very complex interfaces, with
significant and delicate coupling between the relevant physics and the interface motion.

Level set methods cast interface propagation in terms of a time-dependent initial value
problem. More recently, a set of finite difference numerical techniques known as “fast
marching methods” were developed by Sethian [75]; they were constructed to solve the
Eikonal equation, which is a boundary value partial differential equation. These techniques
rely on a marriage between the numerical technology for computing the solution to hyper-
bolic conservation laws and the causality relationships inherent in finite difference upwind
schemes. Fast marching methods are Dijkstra-type methods, in that they are closely con-
nected to Dijkstra’s well-known network path algorithms [29]; however, they approximate
the solution to the underlying Eikonal equation in a consistent manner. While the Eikonal
equation itself describes some front propagation problems, the important link we shall em-
phasize in this review is that fast marching methods provide a general, efficient, and accurate
way to actually implement some aspects of level set methods.

Both sets of techniques, that is, level set methods and fast marching methods, require an
adaptive methodology to obtain computational efficiency. In the case of level set methods,
this leads to the preferred narrow-band level set method introduced by Adalsteinsson and
Sethian in [1]. In the case of fast marching methods [75], adaptivity and speed stem from
the causality relationship and the use of heap data structures.

In this review, we discuss some aspects of the evolution and implementation of these
techniques. We give pointers to some of the many applications and then focus on three
in particular. First, we discuss interface propagation techniques for process simulation in
semiconductor manufacturing, focusing on etching and deposition simulations. The goal in
these simulations is to follow the profile evolution during the various stages of building a
silicon chip. The evolving profile depends on such factors as material-dependent etch and
deposition rates, visibility and masking, complex flux laws, and integral equations arising
from reemission and redeposition processes. Here, we follow closely the work and text of
Adalsteinsson and Sethian, [2–4]. Second, we discuss aspects of fast marching methods
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applied to seismic processing, following closely the work and text of Sethian and Popovici
[85]. Third, we discuss the application of level set techniques to optimal structural topology
design; the goal is to design materials which can carry given loads and minimize the amount
of material involved. Here, we follow closely the work and text of Sethian and Wiegmann
[88].

I. FORMULATIONS OF MOVING INTERFACES, HYPERBOLIC EQUATIONS,

AND CONNECTIONS WITH SHOCK SCHEMES

2. Characterizations of Moving Interfaces

2.1. Mathematical Formulations

There are at least three ways to characterize a moving interface, and none of them are
new. Interestingly, each comes from its own branch of mathematics. For simplicity, we
discuss the issues in two space dimensions, that is, a one-dimensional interface which is
a simple closed curve0(t) moving in two dimensions. Assume that a given velocity field
u = (u, v) transports the interface. All three constructions carry over to three dimensions.

The geometric view.Suppose one parameterizes the interface, that is,0(t) = (x(s, t),
y(s, t)). Then one can write (see, for example, [68]) the equations of motion in terms of
individual componentsx = (x, y) as

xt = u

(
ys(

x2
s + y2

s

)1/2

)
,

yt = −v
(

xs(
x2

s + y2
s

)1/2

)
.

(1)

This is a differential geometry view; the underlying fixed coordinate system has been aban-
doned, and the motion is characterized by differentiating with respect to the parameterization
variables. Since the front motion is categorized in terms of the speed normal to the interface,
the above equation represents motion along that normal vector field.

The set theoretic view.Consider the characteristic functionχ(x, y, t), whereχ is one
inside the interface0 and zero otherwise. Then one can write the motion of the characteristic
function as

χt = u · ∇χ. (2)

In this view, all the points inside the set (that is, where the characteristic function is unity)
are transported under the velocity field.

The analysis view. Consider the implicit functionφ : R2× [0,∞)→ R, defined so that
the zero level setφ = 0 corresponds to the evolving front0(t). Then the equation for the
evolution of this implicit function corresponding to the motion of the interface is given by

φt + u · ∇φ = 0. (3)

2.2. Discretizations

Each of these views is perfectly reasonable, and each has spawned its own numerical
methodology to discretize the equations of motion. Marker particle methods, also known as
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string methods and nodal methods, discretize the geometric view and take a finite number
of points to divide up the parameterization spaceS. Volume-of-fluid methods, also known
as cell methods and volume fraction methods, use a fixed underlying grid and discretize the
characteristic function, filling each cell with a number that reflects the amount of character-
istic function contained in that cell. Level set methods approximate the partial differential
equation for the time-dependent implicit functionφ through a discretization of the evolution
operators on a fixed grid.

These discretizations contain keys to both the virtues and the drawbacks of the various
approaches.

• The geometric/marker particle view keeps the definition of a front sharp. Special atten-
tion is required when marker particles collide, because these collisions can create corners
and cusps, as well as changes in topology. These techniques often go by names such as con-
tour surgery, reconnection algorithms, etc.; at their core, they reflect user-based decisions
about the level of resolution. In addition, this discrete parameterized characterization of the
interface can be intricate for two-dimensional surfaces moving in three dimensions.
• The characteristic/volume-of-fluid approach straight forwardly applies in multiple di-

mensions, handling topological merger easily, since this results from Boolean operations
on sets. It requires some method of differentiating the characteristic functionχ ; since by
definition this object is discontinuous, one must devise an approximation to∇χ to perform
the evolution update. This is typically done through algorithms which locally reconstruct
the front from the volume or cell fractions and then use this reconstruction to build the
appropriate transport terms.
• The implicit/level set approach extends to multiple dimensions and handles topological

changes easily. In addition, because the functionφ is defined everywhere and smooth in
many places, calculation of gradients in the transport term, as well as geometric quantities
such as normal derivatives and curvature, is straightforward. It requires a way of delineating
the actual interface, since its location does not necessarily correspond to the discretization
grid points.

2.3. Implicit Formulations of Interface Motion

To take this implicit approach, there are three additional issues.

• First, an appropriate theory and strategy must be chosen in order to select the correct
weak solution once the underlying smoothness is lost; this is linked to the work on the
evolution of curves and surfaces and the link between hyperbolic conservation laws and
propagation equations (see Sethian [68–70]).
• Second, the Osher–Sethian level set technique which discretizes the above requires

an additional space dimension to carry the embedding, and hence it is computationally
inefficient for many problems. This is rectified through the adaptive narrow-band method
given by Adalsteinsson and Sethian in [1].
• Third, since both the level set function and the velocity are now defined away from

the original interface, appropriate extensions of these values must be constructed. These
extension velocities have been explìcitly constructed for a variety of specific problems; see,
for example, [4, 19, 20, 51, 63, 86, 91, 103]. One general technique for doing so for arbitrary
physics and chemistry problems is given by Adalsteinsson and Sethian in [5] through the use
of fast marching methods to solve an associated equation which constructs these extensions.



LEVEL SET AND FAST MARCHING METHODS 507

2.4. Interrelations between Techniques

It is important to state at the outset that each of the above techniques has evolved to the
point where they provide practical, efficient, and accurate methodologies for computing
a host of computational problems involving moving interfaces. Marker particle methods
have been around for a very long time and have been used in a collection of settings,
including, for example, bubble interactions and fluid instabilities (see, for example, Bunner
and Tryggvasson [17], Esmaeeli and Tryggvason [30, 31], and Glimmet al. [33, 34]).
Volume-of-fluid techniques, starting with the initial work of Noh and Woodward [55] (see
also [36]), have been used to handle shock interactions and fluid interfaces (see, for example,
Puckett [59] and Popinet and Zaleski [58]). Level set techniques have been applied to a large
collection of problems; general reviews may be found in [77, 78, 80, 81]; a popular review
may be found in [79].2 In companion articles in this issue, a variety of interface techniques
and applications will be discussed in detail.

Finally, we note that the strict delineations between various approaches is not meant
to imply that the various techniques have not influenced each other. Modern level set
methods often use a temporary marker representation of the front to help build the extension
velocities; volume-of-fluid methods use differentiation ideas in level set methods to help
construct normal vectors and curvature values; and marker models often use an underlying
fixed grid to help with topological changes. Good numerics is ultimately about getting things
to work; the slavish and blind devotion to one approach above all others is usually a sign
of unfamiliarity with the range of troubles and challenges presented by real applications.

3. Theory and Algorithms for Front Propagation

3.1. Propagating Fronts, Entropy Conditions, and Weak Solutions

To build up to the numerical implementation of the level set method introduced in [56],
we review some of the background work. One of the main difficulties in solving the front
propagation equations is that the solution need not be differentiable, even with arbitrarily
smooth boundary data. This nondifferentiability is intimately connected to the notion of
appropriate weak solutions. The goal is to construct numerical techniques which naturally
account for this nondifferentiability in the construction of accurate and efficient approxi-
mation schemes and to admit physically correct nonsmooth solutions.

In [68, 69], the equation for a curve propagating normal to itself with a given speedF
and which remains a graph as it moves was studied. Consider the simple speed function
F = 1 and a front which is an initial periodic cosine curve, as shown in Fig. 1. In Fig. 1a, the
front propagating with speedF = 1 passes through itself and becomes the double-valued
swallowtail solution; this can be seen by noting that for the caseF = 1, there is an exact
solution to the equations of motion (Eqs. 1) given by the geometric view. This a perfectly
reasonable view of the solution, but it is one that does not lend itself to the view of the front
as a boundary between two regions.

However, suppose the moving curve is regarded as a physical interface separating two
regions. From a geometrical argument, the front at timet should consist of only the set
of all points located a distancet from the initial curve. Figure 1b shows this alternate

2 An introductory web page may be found at www.math.berkeley.edu/∼sethian/levelset.html; this website
provides a large number of Applets and tutorials to explain the various techniques and applications.
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FIG. 1. Cosine curve propagating with unit speed. (a) Swallowtail (F = 1.0); (b) entropy solution (F = 1.0).

weak solution. Roughly speaking, one wants to remove the “tail” from the “swallowtail”
(see [69]). One way to build this solution is through a Huygens principle construction; the
solution is developed by imagining wave fronts emanating with unit speed from each point
of the boundary data; the envelope of these wave fronts always corresponds to the “first
arrivals.” This will automatically produce the solution given on the right in Fig. 1. This is
the approach taken in [69].

Another way to obtain the solution is through the notion of an entropy condition proposed
in [68, 69]; if one imagines the boundary curve as a source for a propagating flame, then
the expanding flame satisfies the requirement that once a point in the domain is ignited
by the expanding front, it stays burnt. This construction also yields the entropy-satisfying
Huygens’s construction given in Fig. 1.

3.2. Curvature-Driven Limits and Viscous Hyperbolic Conservation Laws

Yet another way of obtaining this nondifferentiable weak solution after the occurrence
of the singularity is through the limit of curvature-driven flows. Following the discussions
in [69, 70], we consider now a speed function of the fromF = 1− εκ, whereε is a
constant. The modifying effects of the termεκ are profound and in fact pave the way
toward constructing accurate numerical schemes that adhere to the correct entropy condition.
Following [69], we can write a curvature evolution equation as

κt = εκαα + εκ3− κ2, (4)

where the second derivative of the curvatureκ is taken with respect to arc lengthα. This
is a reaction–diffusion equation; the drive toward singularities due to the reaction term
(εκ3− κ2) is balanced by the smoothing effect of the diffusion term (εκαα).

Consider again the cosine front and the speed functionF(κ) = 1− εκ, ε > 0. As the
front moves, the trough is sharpened by the negative reaction term (becauseκ < 0 at such
points) and smoothed by the positive diffusion term. Forε > 0, it can be shown that the
moving front stays smooth, as shown in Fig. 2a. However, withε = 0, one has a pure
reaction equationκt = −κ2, and the developing corner can be seen in the exact solution
κ(s, t) = κ(s, 0)/(1+ tκ(s, 0)). This is singular in finite timet if the initial curvature is
anywhere negative. The entropy solution to this problem whenF = 1 is shown in Fig. 2b.
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FIG. 2. Entropy solution is the limit of viscous solutions. (a)F = 1− 0.25κ; (b) entropy solution (F = 1.0).

The limit of the curvature-driven flow as the curvature coefficientε vanishes produces
the entropy-limiting solution. This link can be seen more clearly by following the argument
given in [70], which we now repeat. Consider the initial front given by the graph off (x),
with f and f ′ periodic on [0, 1], and suppose that the propagating front remains a graph for
all time. Letψ be the height of the propagating function at timet , and thusψ(x, 0) = f (x).
The tangent at(x, ψ) is (1, ψx). The change in heightV in a unit time is related to the speed
F in the normal direction by

V

F
=
(
1+ ψ2

x

)1/2

1
, (5)

and thus the equation of motion becomes

ψt = F
(
1+ ψ2

x

)1/2
. (6)

Use of the speed functionF(κ) = 1− εκ and the formulaκ = −ψxx/(1+ ψ2
x )

3/2 yields

ψt −
(
1+ ψ2

x

)1/2 = ε ψxx

1+ ψ2
x

. (7)

This is a partial differential equation with a first-order time and space derivative on the left
side and a second-order term on the right. Differentiation of both sides of this equation
yields an evolution equation for the slopeu = dψ/dx of the propagating front, namely,

ut +
[−(1+ u2)1/2

]
x = ε

[
ux

1+ u2

]
x

. (8)

Thus, as shown in [70], the derivative of the curvature-modified equation for the changing
heightψ looks like some form of a viscous hyperbolic conservation law, withG(u) =
−(1+ u2)1/2 for the propagating slopeu. Hyperbolic conservation laws of this form have
been studied in considerable detail and our entropy condition is equivalent to the one for
propagating shocks in hyperbolic conservation laws.

Finally, we point out that the most mathematically precise way of discussing nonsmooth
solutions is through the idea of viscosity solutions introduced by Crandall and Lions [27,
28]; we refer the interested reader to those and associated papers for a complete discussion.
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3.3. Link to Numerical Schemes for Hyperbolic Conservation Laws

Given this connection, the next step in development of PDE-based interface advancement
techniques was to in fact exploit the considerable numerical technology for hyperbolic con-
servation laws to tackle front propagation itself. In such problems, schemes are specifically
designed to construct entropy-satisfying limiting solutions and maintain sharp discontinu-
ities wherever possible; these goals are required to keep fluid variables such as pressure
from oscillating, and to make sure that discontinuities are not smeared out. This is equally
important in the tracking of interfaces, in which one wants corners to remain sharp, and to
intricate development so it can be accurately tracked. Thus, the strategy discussed in [70]
was to transfer this technology to front propagation problems, and this view played a role
in the level set method introduced by Osher and Sethian in [56].

II. BASIC ALGORITHMS FOR INTERFACE ADVANCEMENT

4. Level Set Methods: Basic Algorithms, Adaptivity,
and Constructing Extension Velocities

The above discussion focused on curves which remain graphs. The numerical level set
method given in [56] recasts the front in one higher dimension and uses the implicit analytic
framework given in Section 2.1 to tackle problems which do not remain graphs; in addi-
tion, that work developed multidimensional upwind schemes to approximate the relevant
gradients. Here, we briefly review low-order versions of those schemes before turning to
issues of adaptivity and construction of extension velocities.

4.1. Equations of Motion

Level set methods rely on two central embeddings: the embedding of the interface as
the zero level set of a higher dimensional function and the embedding (or extension) of
the interface’s velocity to this higher dimensional level set function. More precisely, given
a moving closed hypersurface0(t), that is,0 : [0,∞)→ RN , propagating with a speed
F in its normal direction, we wish to produce an Eulerian formulation for the motion of
the hypersurface propagating along its normal direction with speedF , whereF can be a
function of various arguments, including the curvature, normal direction, etc. Let±d be
the signed distance to the interface. Suppose the propagating interface is embedded as the
zero level set of a higher dimensional functionφ. In other words, letφ (x, t = 0), where
x ∈ RN is defined by

φ(x, t = 0) = ±d. (9)

If this is done, then an initial value partial differential equation can be obtained for the
evolution ofφ, namely,

φt + F |∇φ| = 0 (10)

φ(x, t = 0) given. (11)

This is the implicit formulation of front propagation given in [56]. As discussed in [68–
70], propagating fronts can develop shocks and rarefactions in the slope, corresponding to
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corners and fans in the evolving interface, and numerical techniques designed for hyper-
bolic conservation laws can be exploited to construct schemes which produce the correct,
physically reasonable entropy solution.

There are certain advantages associated with this perspective. First, it is unchanged in
higher dimensions, that is, for surfaces propagating in three dimensions and higher. Second,
topological changes in the evolving front0 are handled naturally; the position of the front
at timet is given by the zero level setφ(x, t) = 0 of the evolving level set function. This
set need not be connected and can break and merge ast advances. Third, terms in the speed
function F involving geometric quantities such as the normal vectorn and the curvatureκ
may be easily approximated through the use of derivative operators applied to the level set
function, that is,

n = ∇φ|∇φ| , κ = ∇ · ∇φ|∇φ| .

Fourth, the upwind finite difference technology for hyperbolic conservation laws may be
used to approximate the gradient operators.

4.2. Approximation Schemes

Entropy-satisfying upwind viscosity schemes for this initial value formulation were in-
troduced in [56]. One of the simplest first-order schemes is given as

φn+1
i jk = φn

i jk −1t [max(Fi jk ,0)∇+φ +min(Fi jk , 0)∇−φ], (12)

where

∇+φ =
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.

Here, we have used standard finite difference notation so that, for example,

D+x
i jk =

(φi+1, j,k − φi, j,k)

1x
. (13)

Higher order schemes are also available; see [56].
The above formulation reveals two central embeddings.

1. First, in the initialization step (Eq. (9)), the signed distance function is used to build
a functionφ which corresponds to the interface at the level setφ = 0. This step is known
as “initialization;” when performed at some later point in the calculation beyondt = 0, it
is referred to as “reinitialization.”
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2. Second, the construction of the initial value PDE given in Eq. (10) means that the
velocity F is now defined forall the level sets, not just the zero level set corresponding to
the interface itself. We can be more precise by rewriting the level set equation as

φt + Fext|∇φ| = 0, (14)

whereFext is some velocity field which, at the zero level set, equals the given speedF . In
other words,

Fext = F onφ = 0.

This new velocity fieldFext is known as the “extension velocity.”
Both of these issues need to be confronted to efficiently apply level set methods to

complex computational problems.

4.3. Adaptivity: The Narrow-Band Level Set Method

Equation 12 is an explicit scheme, and hence it can be solved directly. The time step
requirement depends on the nature of the speed functionF ; for an F that depends only on
position, the time step behaves like1t

1x F ≤ 1. In the case when the speed functionF depends
on curvature terms (for example,F = −κ), the equation has a parabolic component, and
hence the time step requirement resembles that of a nonlinear heat equation; the time step
depends roughly on1t

1x2 .
In the level set formulation, both the level set function and the speed are embedded into

a higher dimension. This then implies computational labor through the entire grid, which
is inefficient. A rough operation count for the original level set method assumesN grid
points in each space dimension of a three-dimensional problem. For a simple problem of
straightforward propagation with speedF = 1, assuming that it takes roughlyN time steps
for the front to propagate through the domain (here, the CFL condition is taken almost equal
to unity), this produces anO(N4) method.

Considerable computational speedup in the level set method comes from the use of the
narrow-band level set method, introduced by Adalsteinsson and Sethian in [1]. It is clear
that performing calculations over the entire computational domain is wasteful. Instead, an
efficient modification is to perform work only in a neighborhood (or “narrow band”) of the
zero level set. This drops the operation count in three dimensions toO(kN3), wherek is
the number of cells in the narrow band. This is a significant cost reduction; it also means
that extension velocities need only be constructed at points lying in the narrow band, as
opposed to all points in the computational domain.

The idea of limiting computation to a narrow band around the zero level set was introduced
in Chopp [22] and used in recovering shapes from images in Malladiet al. [50]. The idea is
straightforward and can be best understood by means of figures, following the discussion
in [78].

Figure 3 shows the zero level set corresponding to the front with a dark, heavy line,
surrounded by a few neighboring level sets. Figure 4 shows the data structures used to keep
track of the narrow band. The entire two-dimensional grid of data is stored in a square array.
A one-dimensional object is then used to keep track of the points in the array (dark grid
points in Fig. 4 are located in a narrow band around the front of a user-defined width) (see
Fig. 4). Only the values ofφ at such points within the tube are updated. Values ofφ at grid
points on the boundary of the narrow band are frozen. When the front moves near the edge
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FIG. 3. Grid points in dark area are members of narrow band.

of the tube boundary, the calculation is stopped, and a new tube is built with the zero level
set interface boundary at the center. This rebuilding process is known as “reinitialization.”

Thus, the narrow-band method consists of the following loop:

• Tag “alive” points in narrow band.
• Build “land mines” to indicate near edge.
• Initialize “Far Away” points outside (inside) narrow band with large positive (negative)

values.
• Solve level set equation until land mine hit.
• Rebuild; loop.

In the final step, this “rebuilding” requires some form of reinitialization to rebuild the
signed distance function throughout the new narrow band. This is discussed in detail in
Section 5.

Use of narrow bands leads to level set front advancement algorithms that are computa-
tionally equivalent in terms of complexity to traditional marker methods and cell techniques,
while maintaining the advantages of topological merger, accuracy, and easy extension to
multidimensions. Typically, the speed associated with the narrow-band method is about ten
times faster on a 160× 160 grid than the full matrix method. Such a speedup is substantial;

FIG. 4. Pointer array tags interior and boundary band points.
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in three-dimensional simulations, it can make the difference between computationally in-
tensive problems and those that can be done with relative ease. Details on the accuracy,
typical tube sizes, and number of times a tube must be rebuilt may be found in Adalsteinsson
and Sethian [1].

4.4. Constructing Extension Velocities

As discussed above, the characterization of an interface as an embedding in an implicitly
defined function means that both the front and the velocity of the front are assumed to have
meaning away from the actual interface (see Fig. 5). Thus, to be precise, one has

φt + Fext|∇φ| = 0, (15)

whereFext is some velocity field which, at the zero level set, equals the given speedF . In
other words,

Fext = F onφ = 0.

There are several reasons why one needs to build these extension velocities.

1. There may be no natural speed function. In some physical problems, the velocity is
given only at the front itself. For example, semiconductor manufacturing simulations of the
etching and deposition process require determination of the visibility of the interface with
respect to the etching/deposition beam (see [2–4], as well as later in this paper). There is
no natural velocity off the front, since it is unclear what is meant by the “visibility” of the
other level sets. In this case, an extension velocity must be specifically constructed.

2. Subgrid resolution may be required. In some problems, such as etch under very sharp
material changes, the speed of the interface changes very rapidly or discontinuously as the
front moves through the domain. In such cases, the exact location of the interface determines
the speed, and constructing a velocity from the position of the interface itself, rather than
from the coarse grid velocities, is desirable.

3. Accurate representation of front velocities may be needed. In some problems, the speed
of the interface needs to be calculated from jump conditions or subtle relations involving
the solution of an associated partial differential equation on either side of the interface;
examples include Stefan problems and problems involving Rankine–Hugoniot speeds. The
extension velocity view allows one to construct the correct front velocity and use this to
move the front and the neighboring level sets.

4. Maintaining a nice level set representation is important. Under some velocities, such
as those which arise in fluid mechanics simulations, the level sets have a tendency to either
bunch up or spread out, which is seen whenφ becomes either very steep or flat. The extension
velocity discussed here is designed so that an initial signed distance function is essentially
maintained as the front moves. We maintain a signed distance function for an important
reason: by keeping a uniform separation for the level sets around the front, calculation of
variables such as curvature becomes more accurate.

Suppose one chooses an incorrect velocity extension, one that does not maintain the
signed distance function. Unchecked, this can cause the level set function to develop sharp
and even discontinuous gradients across the zero level set. This means that calculations
of quantities involving derivatives right at the interface, usually where one needs them the
most, become highly suspect. Then the only hope is to repair the level set function each
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FIG. 5. Constructing extension velocities.

time step so that it is rebuilt as the signed distance function. This has the potential to add
considerable error and expense to the algorithm; the process of reinitialization can itself
move the location of the zero level set. Instead, we take the approach of building the correct
extension velocity in that it maintains the signed distance function as the solution evolves,
hence avoiding all reinitialization.

How much freedom does one have in the construction of this extension velocityFext?
Beyond the requirement that it equal the velocity on the front itself, there is considerable
freedom. The original level set calculations is [56] were concerned with interface problems
with geometric propagation speeds, and hence an extension velocity was naturally built by
using the geometry of each given level set. In more nongeometric or local applications,
many different extension velocities have been employed. In many fluid simulations, one
can choose to directly use the fluid velocity itself to act asFext. This is what was done by
Rheeet al. [63] in a series of simulations of turbulent combustion. They built an extension
velocity using an underlying elliptic partial differential equation coupled to a source term
along the interface. This was also done in the two-phase flow simulations of Changet al.
[19] and Sussmanet al.[91]. In these simulations, some bunching and flattenting of the level
set function occurs. This is repaired at every time step through a reinitialization process
which rebuilds the signed distance function using an iterative process given in [91].

When there is no choice available for an extension velocity, Malladiet al. [51] introduced
the idea of extrapolating the velocity from the front. Their idea was to stand at each grid point
and use the value of the speed function at the closest point on the front. Another approach
is to build a speed function from the front using some other, possibly less physical quantity.
Sethian and Strain [86] developed a numerical simulation of dendritic solidification; in this
model, the velocity at the interface depended on a jump condition across the interface and
hence had no meaning for the other “nonphysical” level sets. A boundary integral expression
was developed for the velocity on the interface and evaluated both on and off the front to
provide an extension velocity. The crystal growth study of Chenet al. [20] worked directly
with the partial differential equations (rather than the conversion to a boundary integral)
and built an extension velocity by solving an advection equation in each component, again
coupled to a reinitialization procedure.

The important point is that the velocity fieldFext used to move the level sets neighboring
the zero level set need have nothing to do with the velocity suggested by the physics in the
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rest of the domain. It need only agree with the velocityF at the zero level set corresponding
to the interface.

What are desirable properties of an extension velocity? Here, we follow the discussions
in [5, 81]. First, it should match the given velocity on the front itself. Second, it is desirable
that it moves the neighboring level sets in such a way that the signed distance function
is preserved. Consider for a moment an initial signed distance functionφ (x, t = 0), and
suppose on builds an extension velocity which satisfies

∇Fext · ∇φ = 0. (16)

It is straightforward to show that under this velocity field, the level set functionφ remains
the signed distance function for all time, assuming that bothF andφ are smooth. To see
that this is so (see [103]), suppose that initially|∇φ (x, t = 0)| = 1, and one moves under
the level set equationφt + Fext|∇φ| = 0; then note that

d|∇φ|2
dt

= d

dt
(∇φ · ∇φ) = 2∇φ · d

dt
∇φ = −2∇φ · ∇Fext|∇φ| − 2∇φ · ∇|∇φ|Fext.

The first term on the right is zero because of the way the extension velocity is constructed;
the second is sero because|∇φ(x, t = 0)| = 1. Thus, the solution satisfies|∇φ| = 1; this
plus a uniqueness result for this differential equation show that|∇φ| = 1 for all time.

Thus, the strategy introduced by Adalsteinsson and Sethian [5] uses a two-tiered system.
Given a level set function at timen, namelyφn

i j , one first constructs a signed distance function
φ̄n

i j around the zero level set. Simultaneous with this construction, one then constructs the
extension velocityFext satisfying Eq. (16). This velocity is used to update the level set
functionφn.

There are several important things to note about this approach:

• This construction finds an extension velocity which is then used to update the level
set function. One can, of course, use as high an order method as desired for the level set
update. If one wants to perform this update restricted to a narrow band using the narrow-
band methodology of [1], one is free to do so. However, this methodology provides a way
of doing so at all of the points where one wants to build this extension velocity.
• In this approach, one can choose never to reinitialize the level set function as follows:

1. Consider a level set functionφn at time stepn1t = 0.
2. Build the extension velocity by simultaneously constructing a temporary signed

distance functionφtemp and an extension velocity such that

∇φtemp · ∇Fext = 0,

with φtemp matchingφn at their zero level sets, andFext matching theF given on the
interface.

3. Then advance the level set functionφn under the computed extension velocity to
produce a newφn+1 by solvingφt + Fext|∇φ| = 0.
This algorithm never reinitializes the evolving level set function, yet moves it under a
velocity field that maintains the signed distance function. This avoids a large set of problems
that have plagued some implementations of level set methods, namely that reinitialization
steps can perturb the position of the front corresponding to the zero level set.
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• In this approach, one explicitly finds the zero level set corresponding to the interface to
build the extension velocity. This may seem slightly “illegal”: one of the appealing features
of level set methods is that the front need not be explicitly constructed and that all of the
methodology may be executed on the underlying grid. Here, the front is explicitly built;
however, one neither moves nor updates that representation. In cases of speed functions
that depend on factors such as visibility, this is completely natural. The central virtue of
level set methods lies in the update of the level set function on a discrete mesh to embed
the motion of the interface itself. This strategy and philosophy are maintained.

Thus, given a front velocityF , this choice of extension velocity allows one to update an
interface represented by an initial signed distance function in such a way that the signed
distance function is maintained, and the front is never reinitialized. If one chooses to use
the adaptive methodologies given in the narrow-band approach, occasional rebuilding of
the narrow band may be required, but this is performed only occasionally.

4.5. Summary

In summary, two ideas which underpin level set methods are the link between schemes
for hyperbolic fronts and propagating interfaces and the implicit formulation which embeds
both the interface and the velocity field into one higher dimension, transforming front
propagation into an initial value partial differential equation. To efficiently program level
set methods, one also needs ways to find the signed distance function, both initially and to
rebuild the narrow band. That is, one must quickly and accurately solve

|∇φ| = 1, φ = 0 on0.

In addition, one must solve the associated equation

∇φtemp · ∇Fext = 0,

to efficiently and accurately build an extension velocity. Techniques for performing both of
these steps result from fast marching methods, which we now discuss.

5. Fast Marching Methods for Reinitialization and Extension Velocities

Fast marching methods are finite difference techniques, more recently extended to un-
structured meshes, for solving the Eikonal equation of the form

|∇T |F(x, y, z) = 1, T = 0 on0.

This can be thought of as a front propagation problem for a front initially located at0

and propagating with speedF(x, y, z, ) > 0. We note that this is aboundary valuepartial
differential equation as opposed to an initial value problem given by level set methods, even
though it describes a moving interface. This Eikonal equation describes a large number of
physical phenomena, including those from optics, wave transport, seismology, photolithog-
raphy, and optimal path planning, and fast marching methods have been used to solve these
and a host of other problems. Our interest in this article will be confined only to using this
Eikonal equation and fast marching method to construct efficient ways of reinitializing level
set functions and constructing extension velocities. We refer the reader to [82] and [81] for
a large collection of applications based on this technique.
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5.1. Fast Marching Methods

Consider the upwind finite difference scheme for the Eikonal equation given by


max

(
D−x

i jk T,−D+x
i jk T, 0

)2

+max
(
D−y

i jk T,−D+y
i jk T, 0

)2

+max
(
D−z

i jk T,−D+z
i jk T, 0

)2


1/2

= Fi jk , (17)

which is related to the schemes discussed by Rouy and Tourin [64]. One approach to solving
finite difference scheme (see [64]) is through iteration, which leads to anO(N4)algorithm in
three dimensions, whereN is the number of points in each direction. Instead, fast marching
methods take a different approach.

The fast marching method, introduced in [75], is connected to Huygens’s principle. The
viscosity solution to the Eikonal equation|1T(x)| = F(x) can be interpreted through
Huygens’s principle in the following way: circular wavefronts are drawn at each point on
the boundary, with the radius proportional toF(x). The envelope of these wavefronts is then
used to construct a new set of points, and the process is repeated; in the limit the Eikonal
solution is obtained. The fast marching method mimics this construction; a computational
grid is used to carry the solutionu, and an upwind, viscosity-satisfying finite difference
scheme is used to approximate this wavefront.

The order in which the grid values produced through these finite difference approxima-
tions are obtained is intimately connected to Dijkstra’s method [29], which is a depth-search
technique for computing shortest paths on a network. In that technique, the algorithm keeps
track of the speed of propagation along the network links, fanning out along the network
links to touch all the grid points. The fast marching method exploits a similar idea in the
context of a continuous finite difference approximation to the underlying partial differential
equation, rather than discrete network links.

In more detail, the fast marching method is as follows; we follow the presentation in [81,
82]. Suppose at some time the Eikonal solution is known at a set of points (denotedAccepted
points). For every not-yet accepted grid point such that it has an accepted neighbor, a trial
solution to the above quadratic Eq. (17) is computed, using the given values foru at accepted
points and values of∞ at all other points. Observe that the smallest of these trial solutions
must be correct, since it depends only on accepted values which are themselves smaller.
This “causality” relationship can be exploited to efficiently and systematically compute the
solution as follows (see Fig. 6):

First, tag points in the initial conditions asAccepted. Then tag asConsideredall points
one grid point away and compute values at those points by solving Eq. (17). Finally, tag as
Far all other grid points. Then the loop is:

1. Begin Loop: LetTrial be theConsideredpoint with smallest value ofT .
2. Tag asConsideredall neighbors ofTrial that are notAccepted. If the neighbor is in

Far, remove it from that set and add it to the setConsidered.
3. Recompute the values ofT at allConsideredneighbors ofTrial by solving the piece-

wise quadratic equation according to Eq. (17).
4. Add pointTrial to Accepted; remove fromConsidered.
5. Return to top until theConsideredset is empty.
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FIG. 6. Upwind construction ofAcceptedvalues.

The key to an efficient implementation of the above technique lies in a fast way of locating
the grid point in the narrow band with the smallest value forT . An efficient scheme for
doing so, discussed in detail in [81], can be devised using a min-heap structure, similar to
what is done in Dijkstra’s method. GivenN elements in the heap, this allows one to change
any element in the heap and reorder the heap inO(log N) steps. Thus, consider a mesh with
N total points. Then the computational efficiency of the fast marching method for the mesh
with N points isO(N log N); N steps to touch each mesh point with each step requiring
O(log N), since the heap has to be reordered each time the values are changed.

The fast marching method evolved in part from examining the limit of the narrow-band
level set method [1] as the band was reduced to one grid cell. Fast marching methods, by
taking the perspective of the large body of work on higher order upwind, finite difference
approximants from hyperbolic conservation laws, allow for higher order versions on both
structured and unstructured meshes. The fast marching method has been extended to higher
order finite difference approximations by Sethian in [82], first-order unstructured meshes by
Kimmel and Sethian [40], and higher order unstructured meshes by Sethian and Vladimirsky
[87]; see also photolithography applications in [76], a comparison of a similar approach with
volume-of-fluid techniques in [35], a fast algorithm for image segmentation in [49], and
computation of seismic traveltimes by Sethian and Popovici [85]. We also refer the reader to
[96] for a different Dijkstra-like algorithm by Tsitsiklis which obtains the viscosity solution
through a control-theoretic discretization which hinges on a causality relationship based on
the optimality criterion.

Because we strongly suggest using the more accurate fast marching method introduced
in [81, 82], we include it here for completeness. Following that discussion, we consider
now the switch functions defined by

switch−x
i jk =

[
1 if Ti−2, j,k and Ti−1, j,k are known and Ti−2, j,k ≤ Ti−1, j,k

0 otherwise

]
,

switch+x
i jk =

[
1 if Ti+2, j,k and Ti+1, j,k are known and Ti+2, j,k ≤ Ti+1, j,k

0 otherwise

]
.

(The expressions are similar iny andz.)
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We can then use these operators in the fast marching method, namely,
max

[[
D−x

i jk T + switch−x
i jk

1x
2 D−x−x

i jk T
]− [D+x

i jk T − switch+x
i jk

1x
2 D+x+x

i jk T
]
, 0
]2

+max
[[

D−y
i jk T + switch−y

i jk
1y
2 D−y−y

i jk T
]− [D+y

i jk T − switch+y
i jk

1y
2 D+y+y

i jk T
]
, 0
]2

+max
[[

D−z
i jk T + switch−z

i jk
1z
2 D−z−z

i jk T
]− [D+z

i jk T − switch+z
i jk

1z
2 D+z+z

i jk T
]
, 0
]2


1/2

= 1

Fi jk
. (18)

This scheme attempts to use a second-order one-sided upwind stencil whenever points
are available, but it reverts to a first-order scheme in the other cases. We note in addition
that characteristics flow into the shocks, not out of them. The above method provides higher
accuracy in regions of smoothness; the ultimate accuracy depends on the relationship of
causality to shock lines in the solution. Numerical tests published in [81, 82] indicate a
second-order method for a collection of test cases. For details and discussion, see [81, 82].

5.2. Using Fast Marching Methods for Reinitialization and Extension Velocities

We can now use the techniques given by Adalsteinsson and Sethian [5] which exploit fast
marching methods to both reinitialize level set functions and construct extension velocities.
Recall the step:

• Build the extension velocity by simultaneously constructing a temporary signed dis-
tance functionφtemp and an extension velocity such that

∇φtemp · ∇Fext = 0,

with φtemp matchingφn at their zero level sets, andFext matching theF given on the
interface.

This can be done as follows. First, use the fast marching method to compute the signed
distanceφtemp by solving the Eikonal equation

|∇T | = 1

on either side of the interface, with the boundary condition thatT = 0 on the zero level set
of φ. The solutionT will then be the temporary signed distance functionφtemp. The fast
marching method is run separately for grid points outside and inside the front (note that
whether a grid point is inside or outside is immediately apparent from the sign of the level
set functionφn). The most accurate way to build values to initialize the fast marching heap
is by actually finding the front using an accurate version of a contour plotter and then using
this to build the nearby values; programmed correctly, this is both fast and accurate.

In this approach, we explicitly find the zero level set corresponding to the interface in
order to reinitialize the front (and, as we shall see below, to build the extension velocity as
well). This may seem slightly “illegal”: one of the appealing features of level set methods
is that the front need not be explicitly constructed and that all of the methodology may be
executed on the underlying grid. Here, we choose to explicitly build the front. However,
we neither move nor update that representation. In cases of speed functions that depend on
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factors such as visibility, this is completely natural. The central virtue of level set methods
lies in the update of the level set function on a discrete mesh to embed the motion of the
interface itself. This strategy and philosophy are maintained.

Finding the zero level set is quite straightforward. As mentioned above, in two dimen-
sions a contour plotter can be built. In three dimensions, any algorithm which discretizes a
particular level set of an implicitly defined function can be used. We typically use a variant
of the “marching cube” method discussed in [45], which builds a triangulated representation
of the front. This can then be used to start the fast marching method for both constructing
the signed distance function and for building the extension velocity, which we now discuss.

Onceφtemp is found, the next step is to extend a speed function which is given along
an interface to grid points around the front. This construction should extend the speed in
a continuous manner, and avoid, if possible, the introduction of any discontinuities in the
speed close to the front.

Recall that we want to construct a speed functionFext that satisfies the equation

∇Fext · ∇φtemp= 0. (19)

The idea is to march outward using the fast marching method, simultaneously attaching
to each grid point both the distance from the front and the extended speed value. We first
compute the signed distanceφtemp to the front using the fast marching method as described
in the previous section. As the fast marching method constructs the signed distance at each
grid point, one simultaneously updates the speed valueFext according to Eq. (19). In the
gradient stencil, we use only neighboring points close to the front to maintain the upwind
ordering of the point construction. As an example of a first-order technique, assume that
(i + 1, j ) and(i, j − 1) are the points that are used in updating the distance; ifv is the new
extension value, it then has to satisify an upwind version of Eq. (19), namely,

(
φ

temp
i+1, j − φtemp

i, j

h
,
φ

temp
i, j − φtemp

i, j−1

h

)
.

(
Fi+1, j − v

h
,
v − Fi, j−1

h

)
= 0.

Since(i + 1, j ) and(i, j − 1) are known,F is defined at those points, and this equation
can be solved with respect tov to produce

v = Fi+1, j
(
φ

temp
i, j − φtemp

i+1, j

)+ Fi, j−1
(
φ

temp
i, j − φtemp

i, j−1

)(
φ

temp
i, j − φtemp

i+1, j

)+ (φtemp
i, j − φtemp

i, j−1

) .

Similar expressions exist at other mesh points. Complete details on the use of fast marching
methods to construct extension velocities may be found in [5].

These two steps allow one to efficiently reinitialize and build extension velocities; higher
order fast marching methods provide more accurate versions of these constructions.

6. Extensions and Implementations

6.1. Extensions

There have been many algorithmic extensions to these basic ideas, considerably extend-
ing the range and applicability of these techniques. To mention only a few, these include
variational level set methods to handle multiple differing interface types by Zhaoet al.
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[103] (see also [74]), multiple junctions by Merrimanet al. [52], level set methods for un-
structured meshes by Barth and Sethian, including terms for curvature flow [11], adaptive
mesh refinement schemes by Milne [53], higher order fast marching methods [82], fast
marching methods for manifolds by Kimmel and Sethian [40] as well as certain types of
non-Eikonal static Hamilton–Jacobi equations by Sethian and Vladimirsky [87], level set
flows in arbitrary co-dimension by Ambrosio and Sonar [7], hybrid methods, including
coupled level set/volume-of-fluid techniques by Bourlioux [13], parallel versions [71], and
extensions to motion under the intrinsic Laplacian of curvature by Chopp and Sethian in
[25] and Choppet al. in [26]. We refer the reader to these papers and the review in [81], as
well as companion articles in this issue of the Journal. This paper is by no means meant to
represent the large and rapidly growing body of work in these areas.

6.2. Implementations

There are a large number of ways to implement the details of these techniques. These in-
clude various high order schemes, iterative ways of performing reinitializations, variants on
the narrow-band method, and alternative ways of building extension velocities. In this sec-
tion, we would like to offer some comments which address some issues and implementation
details.

6.2.1. Sources of error.There are several sources of error when level set methods are
used to propagate fronts. These include:

• Errors due to poor choices of extension velocities.This can lead to distortion in
the neighboring level sets, which can require reinitialization procedures to return the level
set function to the signed distance function. If the extension velocity methodology de-
scribed earlier is used, this will ensure, at least formally, that the signed distance function
is maintained.
• Error due to over use of reinitialization. Reinitialization has a tendency to move the

location of the interface. While higher order methods can help, including those that attempt to
either redistribute mass or solve an associated constraint problem, our experience is that the
best approach is to limit reinitialization. This is one of the reasons that the size of the narrow
band in the narrow-band method is chosen large enough to limit reinitialization, rather than
being restricted to a one-cell wide band which would force continuous reinitialization.
• Error due to approximations in the gradient. First order is usually not sufficient;

the numerical diffusion causes sufficient error, and higher order schemes are recommended.
• Time-stepping errors.We typically use a Heun’s method that is second order in time.

6.2.2. Operation counts.Next, we revisit the issue of operation counts. Consider a
computational domain in three space dimensions withN points in each grid direction.
An adaptive narrow-band method focuses all the computational labor onto a thin band
around the zero level set, thus reducing the labor toO(N3k), wherek is the width of
this narrow band, providing the optimal technique for implementing level set methods. In
contrast, the fast marching method is an optimal “adaptive” technique, which drops the
computational labor involved in solving the boundary value formulation toO(N3 log N).
At first glance, the computational efficiency of fast marching methods may not be evident
on the basis of these operation counts. However, two additional advantages provide the
large computational savings. First, because the narrow-band level set method is solving a
time-dependent problem, there is a constraint on the time step. The CFL number is based
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on the speedF and controls the number of steps required to evolve a front. In contrast, the
fast marching method has no such restrictions. The speedF of the front is irrelevant to the
efficiency of the method. Second, the number of elements in the heap depends on the length
of the front; in most cases, this length is small enough that, for all practical purposes, the
sort is very fast and essentiallyO(1). It is important to note that fast marching methods are
methods for computing the solution to the Eikonal equation in all of space, not just in a
neighborhood of the interface.

6.2.3. Separation of labor.One good programming design goal is to provide an en-
vironment in which the underlying physics and mathematical models that drive moving
interfaces may be essentially decoupled from the numerical issues involved in character-
izing and advancing these interfaces. While realistic interface problems typically involve
significant and intricate feedback mechanisms between the interface the underlying physics,
from a programming point of view the two steps can be effectively separated. Our approach
is that the two key components, namely, (1) the update of the interface given a specific ve-
locity field from the physics and (2) the construction of that velocity field from information
determined by the interface, may be split apart, so that each views the other as a “black
box.”

Thus, one divides the physical problem into two fundamental components:

1. The user-supplied driver routines, which make calls to the interface routine.
2. The interface advancement routine, which has two functions.
• It can be queried to produce geometric data about the front, such as location, nodes

along the front, local curvature, etc.
• Given a user-supplied velocity field along the interface, it can be used to advance

the interface position.

By splitting codes in this manner, and building the general routines discussed earlier,
robust software can be built and reused.

6.2.4. Flow of codes.Finally, we break down code flow for interface problems. We
imagine the problem, somewhat abstractly, as follows:

• We are given an initial interface0, which may consist of several pieces.
• Given the position of the interface at any time, we are able to solve a set of partial

differential equations on either side of the interface, using information about the interface
location itself, as well as the value of certain quantities on the interface, to obtain the speed
F on the interface.

A flow chart for the implementation is shown in Fig. 7.

III. THREE APPLICATIONS

The range of applications of level set and fast marching methods is vast, and we refer to
only a few for bibliographic reference. These include work on semiconductor manufacturing
[2–4, 35, 76, 84], geometry and minimal surfaces [9, 22–24, 72], combustion and detonation
[10, 32, 63, 105, 106], fluids and surface-tension-driven flows [15, 19, 44, 54, 89–91, 102–
104, 106], shape recognition and segmentation [16, 18, 46–48, 51, 67], crystal growth
[20, 86], liquid bridges [21], groundwater flow [37], constructing geodesics [38, 40, 41],
robotic navigation and path planning [39], inverse problems [65], grid generation [73], and
seismology [85].
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FIG. 7. Flow chart for implementing narrow-band level set methods.

In Fig. 8, we give a perspective on how some of these topics are related. There are many
other contributors to the evolution of these ideas; the chart is meant to give one perspective
on how the theory, algorithms, and applications have evolved. The text and bibliography of
[81] give a somewhat more complete sense of the literature and the range of work underway.

In the next sections, we discuss three applications in detail. The first, semiconductor
processing, is chosen because it requires much of the above methodology to obtain the
accuracy, efficiency, and robustness required in semiconductor manufacturing, and because
the results have been so closely matched with experiment. The second, seismic processing,
is chosen because of the need for the great speed provided by fast marching methods. The
third, optimal design of materials, is chosen because of the requirement of delicate elliptic
solvers, and because of the more unusual nature of the application.

7. Interface Schemes for Semiconductor Processing

The first major application we consider is the application of these front propagation
techniques to tracking interfaces in the microfabrication of electronic components. The
goal is to follow the changing surface topography of a wafer as it is etched, layered, and
shaped during the manufacturing process. These simulations rest on many of the previously
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FIG. 8. Algorithms and applications for interface propagation.

discussed techniques, including narrow-band level set methods, fast marching methods
for the Eikonal equation, and construction of extension velocities. In addition, they require
attention to such issues as masking, discontinuous speed functions, visibility determinations,
algorithms for subtle speed laws depending on second derivatives of curvature, and fast
integral equation solvers. In this section, we follow closely the text in [2–4, 81].
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7.1. Physical Effects and Background

The goal of numerical simulations in microfabrication is to model the process by which
silicon devices are manufactured. Here, we briefly summarize some of the physical pro-
cesses. First, a single crystal ingot of silicon is extracted from molten pure silicon. This
silicon ingot is then sliced into several hundred thin wafers, each of which is then polished
to a smooth finish. A thin layer of crystalline silicon is then oxidized, a light-sensitive “pho-
toresist” is applied, and the wafer is then covered with a pattern mask that shields part of
the photoresist. This pattern mask contains the layout of the circuit itself. Under exposure
to a light or an electron beam, the exposed photoresist polymerizes and hardens, leaving
an unexposed material that is then etched away in a dry etch process, revealing a bare sil-
icon dioxide layer. Ionized impurity atoms such as boron, phosphorus, and argon are then
implanted into the pattern of the exposed silicon wafer, and silicon dioxide is deposited at
reduced pressure in a plasma discharge from gas mixtures at a low temperature. Finally, thin
films such as aluminum are deposited by processes such as plasma sputtering, and contacts
to the electrical components and component interconnections are established. The result is
a device that carries the desired electrical properties.

These processes produce considerable changes in the surface profile as it undergoes
various effects of etching and deposition. This problem is known as the “surface topography
problem” in microfabrication and is controlled by many physical factors, including the
visibility of the etching and deposition source from each point of the evolving profile,
surface diffusion along the front, complex flux laws that produce faceting, shocks, and
rarefactions, material-dependent discontinuous etch rates, and masking profiles.

The underlying physics and chemistry that contribute to the motion of the interfce profile
are very much areas of active research. Nonetheless, once empirical models are formulated,
the problem ultimately becomes the familiar one of tracking an interface moving under a
speed functionF . Simulations and text in this chapter are taken in part from Adalsteinsson
and Sethian [2–4]; complete details may be found therein (see [84] for a review).

The underlying physical effects involved in etching, deposition, and lithography are quite
complex. The effects may be summarized briefly as follows:

• Deposition:Particles are deposited on the surface, which causes buildup in the profile.
The particles may either isotropically condense from the surroundings (known as chemical
or “wet” deposition) or be deposited from a source. In the latter case, particles leave the
source and deposit on the surface; the main advantage of this approach is increased control
over the directionality of surface deposition. The rate of deposition, which controls the
growth of the layer, may depend on source masking, visibility effects between the source
and surface point, angle-dependent flux distribution of source particles, and the angle of
incidence of the particles relative to the surface normal direction. In addition, particles
might not stick, but in fact be reemitted back into the domain. This process is known as
“reemission” and the “sticking coefficient” between zero and one is the fraction of particles
that stick. A sticking coefficient of unity means that all particles stick. Conversely, a low
sticking coefficient means that particles may bounce many times before they eventually
become fixed to the surface.
• Etching:Particles remove material from the evolving profile boundary. The material

may be isotropically removed, known as chemical or “wet” etching, or chipped away through
reactive ion etching, also known as “ion milling.” Similar to deposition, the main advantage
of reactive ion etching is enhanced directionality, which becomes increasingly important as
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device sizes decrease substantially and etching must proceed in vertical directions without
affecting adjacent features. The total etch rate consists of an ion-assisted rate and a purely
chemical etch rate due to etching by neutral radicals, which may still have a directional
component. As in the above, the total etch rate due to wet and directional milling effects can
depend on source masking, visibility effects between the source and surface point, angle-
dependent flux distribution of source particles, and the angle of incidence of the particles
relative to the surface normal direction. In addition, because of chemical reactions that take
place on the surface, etching can cause surface particles to be ejected; this process is known
as “redeposition.” The newly ejected particles are then deposited elsewhere on the front,
depending on their angle and distribution.
• Lithography:The underlying material is treated by an electromagnetic wave that alters

the resist property of the material. The aerial image is found, which then determines the
amount of crosslinking at each point in the material. This produces the etch/resist rate at
each point of the material. A profile is then etched into the material, where the speed of the
profile in its normal direction at any point is given by the underlying etch rate.

We now formalize the above. Define the coordinate system with thex andy axes lying
in the plane, and withz being the vertical axis. Consider a periodic initial profileh(x, y),
whereh is the height of the surface above thex–y plane, as well as a sourceZ given as a
surface above the profile; we writeZ(x, y) as the height of the source at (x, y). Define the
source ray as the ray leaving the source and aimed toward the surface profile. Letψ be the
angle variation in the source ray away from the negativezaxis;ψ runs from 0 toπ , though it
is physically unreasonable to haveπ/2< φ < π . Letγ be the angle between the projection
of the source ray in thex–y plane and the positivex axis. Letn be the normal vector at a
point x on the surface profile andθ be the angle between the normal and the source ray.

In Fig. 9, these variables are indicated. Masks, which force flux rates to be zero, are
indicated by heavy dark patches on the initial profile. At each point of the profile, a visibility

FIG. 9. Variables and setup.
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indicator functionMϒ(x, x′) is assigned; this indicates whether the pointx on the initial
profile can be seen by the source pointx′.

7.2. Equations of Motion for Etching and Deposition

The goal is to write the effects of deposition and etching on the speedF at a pointx on
the front.

7.2.1. Etching. We consider two separate types of etching:

• FEtching
Isotropic: Isotropic etchingis uniform etching, also known as chemical or wet etching.

• FEtching
Direct : Direct etchingis etching from an external source; this can be either a collection

of point sources or an external stream coming from a particular direction. Visibility effects
are included, and the flux strength can depend on both the solid angle from the emitting
source and the angle between the profile normal and the incoming source direction. Etching
can include highly sensitive dependence on angle such as in ion milling.

7.2.2. Deposition. We consider four separate types of deposition:

• FDeposition
Isotropic : Isotropic depositionis uniform deposition, also known as chemical or wet

deposition.
• FDeposition

Direct : Direct depositioninvolves deposition from an external source; this can be
either a collection of point sources or an external stream coming from a particular direction.
Visibility effects are included and the flux strength can depend on both the solid angle from
the emitting source and the angle between the profile normal and the incoming source.
• FDeposition

Redeposition: Redepositioninvolves particles that are expelled during the etching pro-
cess. These particles then attach themselves to the profile at other locations. The strength
and distribution of the redeposition flux function can depend on factors such as the local
angle. A redeposition coefficient,βRedeposition, which can range from zero to unity, represents
the fraction of redeposition that results from the etching process. A value ofβRedeposition= 1
means that nothing is redeposited and everything sticks.
• FDeposition

Reemission: In reemission deposition, particles that are deposited by direct deposition
might not stick and may be reemitted into the domain. The amount of particles reemitted
depends on a sticking coefficientβReemission. If βReemission= 1, nothing is reemitted.

In Fig. 9, we generalize all of these effects as the “source.” The plane source is shown
in the figure may consist of locations which emit either unidirectional or point-source
contributions.

7.3. Assembling the Terms

We may, somewhat abstractly, assemble the above terms into the single expression:

F = FEtching
Isotropic+ FEtching

Direct + FDeposition
Isotropic + FDeposition

Direct + FDeposition
Redeposition+ FDeposition

Reemission. (20)

The two isotropic terms are evaluated at a pointx by simply evaluating the strengths at
that point. The two direct terms are evaluated at a pointx on the profile by first computing
the visibility to each point of the source and then evaluating the flux function. These terms
require computing an integral over the entire source. To compute the fifth term at a pointx,
we must consider the contributions of every point on the profile to check for redeposition
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particles arising from the etching process; thus this term requires computing an integral
over the profile itself. The sixth term,FDeposition

Reemission, is more problematic. Since every point on
the front can act as a deposition source of reemitted particles that do not stick, the total flux
deposition function comes from evaluating an integral equation along the entire profile.

In more detail, letÄ be the set of points on the evolving profile at timet , and letSource
be the external source. Given two pointsx andx′, letϒ(x, x′) be one if the points are visible
from one another and zero otherwise. Letr be the distance fromx to x′, let n be the unit
normal vector at the pointx, and finally, letα be the unit vector at the pointx′ on the source
pointing toward the pointx on the profile. Then we may refine the above terms as:

F = FluxEtching
Isotropic+

∫
Source

FluxEtching
Direct (r, ψ, γ, θ, x)ϒ(x, x′)(n ·α) dx′

+FluxDeposition
Isotropic +

∫
Source

FluxDeposition
Direct (r, ψ, γ, θ, x)ϒ(x, x′)(n ·α) dx′

+
∫
Ä

(1− βRedeposition)FluxDeposition
Redeposition(r, ψ, γ, θ, x)ϒ(x, x′)(n ·α) dx′

+
∫
Ä

(1− βReemission)FluxDeposition
Reemission(r, ψ, γ, θ, x)ϒ(x, x′)(n ·α) dx′. (21)

7.4. Evaluating the Terms

The integrals are performed in a straightforward manner. The front is located is located
by constructing the zero level set ofφ; it is represented in two dimensions by a collection
of line segments and in three dimensions by a collection of voxel elements; see [2, 3].
The centroid of each element is taken as the control point, and the individual flux terms are
evaluated at each control point. In the case of the two isotropic terms, the flux is immediately
found. In the case of the two integrals over sources, the source is suitably discretized and
the contributions summed. In the fifth term, corresponding to redeposition, the integral
over the entire profile is calculated by computing the visibility to all other control points,
and the corresponding redeposition term is produced by the effect of direct deposition.
Thus, the fifth term requiresN2 evaluations, whereN is the number of control points which
approximate the front.

7.4.1. Evaluation of the reemission term.The sixth and last term is somewhat more
time consuming to evaluate, since it requires evaluation of the flux FluxDeposition

Reemissionfrom each
point of the interface, each of which depends on the contribution from all other points. Thus,
this is an integral equation which must be solved to produce the total deposition flux at any
point. When discretized, it produces a full, nonsymmetric matrix which must be solved at
every time step to compute the relevant flux. In [4], a recurrence relationship is developed
which allows a quick way of solving this discrete integral equation. This approach constructs
an iterative solution to the integral equation, based on a series expansion of the interaction
matrix. Fortunately, the iterative solution reduces to a simple matrix–vector multiplication
and an error bound can be established to predict the number of iterations (which can be
thought of as terms in the expansion) to compute the solution to the desired degree of
accuracy.

This problem is a good example of the necessity of constructing extension velocities.
There is no readably available and physical definition of the velocity off the interface with
which to move the neighboring level sets. Consequently, the extension velocity methodology
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described earlier can be used to construct extension velocities in the narrow-band level set
method.

7.4.2. Visibility. To evaluate these terms above, we need to compute the visibility, that is,
to find out if a point on the front is illuminated by another point on the front (or, in some cases,
by the source itself). This visibility issue is common to a host of other problems, including
scene rendering in computer graphics, ray tracing, and optimal placement of transmitters.
This is a time-consuming component of any calculation; programmed directly, it requires
O(N3) evaluations, where there areN points on the front. This is because each point must
determine whether it can see each ofN other points, and there areN intermediate points
which might block the visibility.

Fortunately, a very fast way of determining the visibility is offered by a combination of
level set methods and fast marching methods (see [2–4]). In the first step, we determine
the signed distance function away from the interface using the fast marching method as
discussed above. Armed with this, we may easily determine if two points on the front see
each other by checking the sign of this signed distance function along the line segment
connecting the two points; if this function changes sign, then the two points cannot see each
other. This search may be done in a binary fashion, rendering a rapid way of determining
visibility. For details, see [2–4].

7.4.3. Surface diffusion.An additional physical effect comes from surface diffusion,
which relates to the motion of metal boundaries. It can be shown that this is connected to
motion by the intrinsic Laplacian of curvature (see [25] for details). The basic physical idea
behind this motion is that it evolves to balance out the interface so that the final state has
constant curvature. It can be shown that the enclosed volume is constant under this motion,
and this can serve to develop fast methods. In two dimensions, it reduces to motion by the
second derivative of curvature. Thus, we need to add an additional term of the form

F = 1+ εκαα, (22)

whereα is an arc-length parameterization. The problem is delicate because Eq. (22) leads to
a level set equation which is a time-dependent fourth-order partial differential equation, and
the presence of the fourth derivative requiress an exceedingly small time step for stability in
an explicit scheme; the linear fourth-order heat equation has a stability time step requirement
of the formO( 1t

1h4 ). We make use of the methodology given by Chopp and Sethian in [25].
Approximations and fast methods for solving this sort of flow may be found in [26].

7.5. Results

7.5.1. Photolithography development.We begin the three-dimensional simulations
with a problem in photolithography. Once the electromagnetic and optical simulations
are performed, the problem of photolithography development reduces to that of following
an initially plane interface propagating downward in three dimensions. The speed in the
normal direction is given as a supplied rate function at each point. The speedF = F(x, y, z)
depends only on position; however, it may change extremely rapidly. The goal in lithog-
raphy development is to track this evolving front. To develop realistic structures in three-
dimensional development profiles, a grid of size 300× 300× 100 is not unreasonable. The
higher order fast marching method is of considerable value in the development step. As an
example, a rate function calculated using the three-dimensional exposure and post-exposure
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FIG. 10. Lithographic development using fast marching method. (a) Masking pattern; (b) lithographic
development; view from below.

bake modules of TMA’s Depict 4.0 [93] has been coupled to the fast marching method.
Figure 10a shows the top view of a mask placed on the board. The dark areas correspond to
areas that are exposed to light. The presence of standing waves, caused by the reflectivity
of the surface, can easily be seen. In Fig. 10b a view of the developed profile is shown from
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FIG. 11. Isotropic etching into a hole.

underneath; the etching of the holes and the presence of standing waves can be seen easily.
For further results, see [76].

7.5.2. Etching and deposition.Next, we show a straightforward calculation of isotropic
etching into a hole, taken from [3]. In Fig. 11 we show a square hole from which a material
is being isotropically etched, corresponding to a simple speed function ofF = −1. As
expected, the sides of the cavity are cleanly etched away, leaving smoothed, rounded walls.

We follow with a calculation of source deposition from a plate located above the hole.
The effects of visibility and shading are included. Along the entire plate, deposition material
is emitted uniformly in each direction. In Fig. 12, we show three three-dimensional time
plots of the evolving profile. The trench begins to pinch off due to the effects of visibility,
and a bulb-shaped profile evolves.

We end the basic calculations with the modeling (Fig. 13) of the effect of nonconvex sput-
ter etch/ion milling of a saddle surface. The nonconvex speed lawF = (1+ 4 sin2(θ)) cosθ
causes faceting of sharp corners and rounded polishing; for details of this effect, see [3].
Here, we use schemes for nonconvex Hamiltonians given in [57] for the level set update.

7.5.3. Complex simulations.Next, we include an example of three-dimensional effects
of redeposition. The initial shape is a double-L, and we consider a combination of two
cosine flux deposition sources. That is, the initial flux at each point is given by

Flux(x) = cos5(θ1) cos(θ2)+ cos(θ1) cos(θ2); (23)

in addition, the second deposition term is given a sticking coefficient of 0.1, and thus we
also consider the effects of redeposition. Hereθ1 is the angle that the vectorv from x to y
makes with the normal atx, andθ2 is the angle that the vectorvmakes with the vertical. The

FIG. 12. Source deposition into a hole.
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FIG. 13. Downward saddle under sputter etch.

results are shown after some time evolution in Fig. 14b; a two-dimensional cross-sectional
cut is shown in Fig. 14c. For more simulations, see [4].

7.5.4. Timings. The computational labor required in these calculations depends on the
grid resolution required to represent the front and the complexity of the physical effects under
consideration. Tables I and II give rough timings for various sizes and physical complexities
for a Sun Ultra. The lithography timings were computed using the fast marching method
given in [75].

7.6. Validation with Experimental Results

We end with a collection of applications of the level set–fast marching methodology which
compare simulations with experiment to analyze various aspects of surface thin film physics.
The simulations in this section are performed using either TERRAIN3 (a commercial version

3 We thank Juan Rey, Brian Li, and Jiangwei Li for providing these results.
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TABLE I

Two-Dimensional Timings

50 by 50 100 by 100

Test Run time Steps Time/step Run time Steps Time/step

Lithography (fast marching) 6.9 ms NA NA 26 ms NA NA
Isotropic (narrow band) 82 ms 24 34 ms 0.4 s 49 8 ms
Unidirectional (with visibility) 0.4 s 17 23 ms 2.3 s 34 70 ms
Etching and redeposition 1.7 s 25 68 ms 14 s 51 0.3 s
Deposition and redeposition 1.1 s 17 65 ms 12 s 39 0.3 s

(iterative model)

TABLE II

Three-Dimensional Timings

40 by 40 by 40 80 by 80 by 80

Test Run time Steps Time/step Run time Steps Time/step

Lithography (fast marching) 0.16 s NA NA 2.1 s NA NA
Isotropic (narrow band) 1.3 s 8 0.16 s 13.6 s 24 0.6 s
Unidirectional (with visibility) 16.7 s 24 0.7 s 270 s 47 5.7 s
Etching and redeposition 224 s 12 19 s 260 m 25 10 m
Deposition and redeposition 265 s 11 24 s 290 m 23 12.6 m

(iterative model)

FIG. 14. Three-dimensional evolution under cosine source distribution with sticking coefficient 0.1. (a) Initial
position; (b) time evolution; (c) two-dimensional cross section.
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FIG. 15. Ion milling: experiment (top) vs. simulation (bottom).

of these techniques built by Technology Modeling Associates and specifically designed for
process simulation; for further details about this code and its capabilities, see [94]) or a
research version of the code built by SAIT of Samsung Corporation.4

7.6.1. Ion milling. We begin with a comparison with experiment of an ion-milling
process. The goal here is verify our ability to handle critical etching angles that are not
maximal in the normal direction. In these cases, as discussed earlier, the maximum of the
yield function occurs away from 90 degrees, and this causes faceting in the evolving shape.
Typically, the yield function is measured experimentally and then used as an empirical
model fit in the numerical simulation. We show simulations from the Terrain code matched
against experimental data. Figure 15 shows an experiment on the top and a simulation at the
bottom. We note that both the simulation and the experiment show the crossing nonconvex
curves on top of the structures, the sharp points, and the sloping sides.

7.6.2. Complex effects: measuring the effects of various terms.Next, using the SAIT
code, we study of combination of various physical effects.

4 We thank J. Huh, J. Shin, and H. Lee for use of their results.
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FIG. 16. Photoresist layer.

In this problem (see Fig. 16), the silicon layer is etched by a combination of uniform
chemical etching and ion-assisted directional etching. Relative rates depend on process
parameters: power, pressure, gas fractions, etc. The photoresist is eroded only by ion milling,
and hence it is highly directional, similar to the experiment shown is Section 7.6.1.

In the first experiment, we compare relative rates of uniform and directional etching in
two separate cases (see Fig. 17). In Case 1, the directionality of the etching is strong. Thus,
the small total etch rate results in large amount of physial erosion of the mask. However, in
Case 2, the pressure in taken as 2.5 times larger than that in Case 1, and chemical etching
is chosen to be larger than in Case 1. This enchances the total etch rate, as seen in the
results, produces a large amount of uniform etching, and results in considerable undercut
and sidewall erosion.

In the second set of experiments, we continue with two more cases (see Fig. 18.) Here,
we study the angular distribution of incident ion flux. In these studies, the gas fraction of
oxygen in Case 4 is 2 times larger than that of Case 3. This results in a broader angular
distribution of ion flux in Case 4, and hence the amount of sidewall erosion is bigger in
Case 4 than it is in Case 3.

7.6.3. Plasma-enhanced chemical vapor deposition.Next, we show comparison with
experiment of two plasma-enhanced chemical vapor deposition (PECVD) simulations using
TERRAIN. We show a series of experiments. First, two smaller structure calculations are
used to verify the ability to match experiment. Figures 19 shows these results. Figures 20
and 21 show more simulations for more complex structures.

FIG. 17. Relative rates of uniform and directional etching.
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FIG. 18. Angular distribution of incident ion flux.

FIG. 19. PECVD on a small-scale structure: experiment (left) vs. simulation (right).

FIG. 20. PECVD: experiment (left) vs. simulation (right).
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FIG. 21. PECVD: experiment (left) vs. simulation (right).

7.6.4. SRAM simulations.Finally, we show SRAM comparisons between experiment
and simulations for both small structures (Fig. 22) and large structures (Fig. 23) using
TERRAIN. Each figure shows the original layout together with the actual pattern printed
through photolithography, followed by the sequential processing steps.

8. Seismic Traveltimes

Next, we explore applications of fast marching methods to problems involving the imag-
ing of geophysical data sets. In [85], Sethian and Popovici used the fast marching method
to rapidly construct first arrival times in seismic analysis and then coupled this work to
prestack migration. Here, we follow closely that work and text. For further details, see [85].

Three-dimensional (3D) prestack migration of surface seismic data is a tool for imaging
the earth’s subsurface when complex geological structures and velocity fields are present,
The most commonly used imaging techniques applied to 3D prestack surveys are methods
based on the Kirchhoff integral, because of its flexibility in imaging irregularly sampled
data and its relative computational efficiency. To perform this Kirchhoff migration, one
approximately solves the wave equation with a boundary integral method. The reflectivity
at every point of the earth’s interior is computed by summing the recorded data on multidi-
mensional surfaces; the shapes of the summation surfaces and the summation weights are
computed from the Green’s functions of the single scattering wave-propagation experiment
(see [60, 66]).

8.1. Background Equations

In some more detail, the essence of 3D prestack migration is expressed by the integral
equation

Image(x) =
∫ ∫

xs

∫
xr

G(xs, x, ω)G(x, xr , ω)Data(xs, xr , ω)dxr dxs dω,

wherex is the image output location,xs andxr are the data source and receiver coordinates,
andω is angular frequency. The Green’s functionsG(xs, x, ω) andG(x, xr , ω) parameterize
propagation from source to image point and from image point to receiver, respectively. In
most implementations, the calculation is often done instead in the time domain and can be
expressed as the summation

Image(x) =
∑

xs

∑
xr

AsAr Input(xs, xr , ts + tr ),
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FIG. 22. SRAM simulation.

where Input is a filtered version of the input data, and the Green’s functions are parameterized
by the amplitude termsAs andAr and travel timests andtr .

For 3D prestack Kirchhoff depth migration, the Green’s functions are represented by
five-dimensional (5D) tables; these tables are functions of the source and receiver surface
locations(x, y) and of the reflector position(x, y, z) in the earth’s interior. This Green’s
function parameterization is usually based on the assumption of acoustic propagation. This
Kirchhoff prestack migration process consists of two stages. First, travel-time tables are
computed and stored. Second, the migrated image is formed by convolving the prestack data
with migration operator derived from the travel-time tables. Both phases present challenges
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FIG. 23. SRAM simulation.

from the perspectives of the geophysical accuracy and of the computer implementation (see
Fig. 24).

The key element of 3D prestack Kirchhoff depth migration is the calculation of travel-
time tables used to parameterize the asymptotic Green’s functions. An efficient travel-time
calculation method is required to generate the 5D travel-time tables needed for 3D Kirchhoff
migration.5 Also, since depth migration problems are generally applied in areas of complex
velocity structure, the travel-time calculation method must be robust. Computing 3D Green’s

5 The Green’s function can be reconstructed from travel-time tables that describe travel times from all surface
points(x, y) to all subsurface locations(x, y, z); thus the tables are five dimensional.
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FIG. 24. In 3D seismic surveying, seismic waves are generated by surface sources (shots) S, and the reflected
waves are recorded at surface receivers (geophones) G. The Green’s function describes the energy of the wavefield
backscattered from the reflector point at all possible source and receiver combinations.

function tables over a 100× 100 square kilometer area (about 430 marine blocks), with
sources positioned every 200 meters, requires 1 terabyte of travel-time volumes. Thus, speed
is an important issue.

Designing efficient and accurate travel-time computation methods has a long history;
the past ten years have seen considerable new advancements, particularly those aimed at a
finite difference approach (see Vidale ([97])). Prior to this work, travel times were typically
computed using ray tracing. While these ray-tracing methods offer a high degree of accuracy,
they also pose interpolation problems in shadow areas and areas where multiple caustics
develop. The use of finite difference travel times ameliorates these interpolation problems
in shadow zones, at the price of foregoing detection of most energetic arrivals in exchange
for the first arrival.

A broad spectrum of travel-time computation methods was developed in the early 1990s.
Vidale extended his finite difference travel time to three dimensions [98], while van Trier
and Symes [95] introduced a two-dimensional explicit finite difference method with a
vectorizable inner kernel that ran efficiently on vector computer platforms. At its core, the
problem of computing first arrival times requires solution of the Eikonal equation, with the
goal of accurately and robustly dealing with the formation of cusps and corners, topological
changes in the solution, and singularities. Fast marching methods, both first- and second-
order versions, provide viable approaches.

8.2. Computing Fast Marching Method Travel Times through a Salt Structure

We begin by showing the results of using the fast marching method to compute three-
dimensional travel times through a salt structure.6 We start with the techniques applied
to a 3D SEG/EAGE salt dome velocity model [8]. The salt dome model was designed
to contain major complex features that are characteristic of complicated Gulf of Mexico
salt structures. It includes a northwesterly plunging stock, a secondary reactivation crest
southward of the stock, a low-relief eastern flank, a faulted southern flank with a toe thrust,
a rounded overhang on the west flank, five sands that are gas charged (at least one contains

6 All seismic calculations were performed using the implementation of the fast marching method developed by
3DGeo Corporation.
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FIG. 25. Travel-time slices through SEG/EAGE salt model.

both a gas–oil contact and an oil–water contact), and a shale sheath that is modeled to be
geopressured. The seafloor map exhibits a counter-regional fault scarp, a bathymetric rise
associated with the sill crest and a shelf break at the southeast end of the model. The overall
model size is 13.5× 3.5× 4.2 km3 on a 20-m grid.

The SEG/EAGE salt model has a complicated salt-to-sediments interface which creates
complex wave propagation problems. We show contour travel times superimposed on the
velocity model which are representative for the wave propagation patterns encountered
while solving the Eikonal equation in the SEG/EAGE salt model. Figure 25 shows a travel-
time slice through the SEG/EAGE salt model with a point source at the surface. The grid is
a 100× 100× 100 mesh, with mesh size equal to 40 m per cell side. Figure 25b shows the
formation of headwaves which travel along the salt–sediment interface. Figure 26 shows
the result of a horizontal travel-time slice through the travel-time cube at a depth of 1380 m
and accurately captures the formation of cusps.

FIG. 26. Horizontal slice through SEG/EAGE salt model.
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FIG. 27. Velocity model and migrated image.

8.3. Migration Using the Fast Marching Method

Figures 27 and 28 show slices through the three-dimensional velocity and corresponding
structural images obtained from migration on prestack data obtained from a given data set.
On the left, Fig. 27 shows a depth slice through a velocity cube at a depth of 1220 m; on

FIG. 28. Velocity model and migrated image.
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the right, the corresponding migrated image slice is shown. The salt–sediment interface
and the semicircular fault cutting through the salt body are imaged with high resolution.
Figure 28 compares the velocity model on the left with the corresponding migrated line
on the right for a different slice. The sediment images are imaged at the correct locations,
together with the salt body borders. The areas with lesser quality are under the salt, most
probably because of the multiple reflected arrivals at this spot from the water bottom and
intra-salt reflections, and also close to the left side of the top of the salt, most probably also
resulting from the use of first arrivals in the fast marching method.

Next, two-dimensional travel times were used to image the Marmousi data, which is a
synthetic data set based on a real geologic model from the Cuanza basin in Angola [14].
The geologic model of the basin consists of a deltaic sediment interval deposited upon a
saliferous evaporitic series. The sediments are affected by normal growth faults caused by
the salt creep. Under the salt there is a folded carbonate sedimentation series forming a
structural hydrocarbon trap. The challenge is to image the hydrocarbon trap. The complex
velocity model, with strong lateral velocity variations, is shown in Fig. 29 on the left.
On the right, the figure shows the migrated images using three-dimensional travel-time
tables computed with the fast marching method, operating in a two-dimensional mode. The
typical challenges in imaging this data set are (1) imaging correctly and without artifacts the
position of the faults, (2) imaging the V-shaped termination of the layers, which are zones
that concentrate rays and produce distorted images, (3) imaging correctly the top of the first
anticlinal structure and the bottom of the two salt intrusions, and (4) imaging the sediments
in the second, deep anticlinal structures. The images shown correctly image the faults,
even in the high-velocity layers, and avoid artifacts at the bottom of the V-shaped fault and
layer terminations. The fact that the fast marching method produces first arrivals, which
may not correspond to the most energetic arrivals, may explain why the second, deeper

FIG. 29. Velocity model and migrated image (Marmousi data set).
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FIG. 30. Region on left is slower than region on right.

anticlinal area is missed. For further discussion of this and other features, see [85], as well
as [92].

8.4. Removing Headwaves: Toward Computing Most Energetic Arrivals

As discussed above, one of the issues associated with using the Eikonal equation to
compute arrival times is that the solution is typically limited to first arrivals. These may not be
the most energetic arrivals; a noticeable case comes in the presence of sharp discontinuities.
Consider a discontinuity separating a slow region from a fast region, as in Fig. 30.

A disturbance that starts on the left in the slower material will travel quickly once it
reaches the discontinuity line between the two materials, and the true shortest path for
points located significantly above the source may traverse this discontinuity. Such arrivals,
known as headwaves, contain little energy and can negatively influence migration analysis.
Recently, algorithms have been developed which remove headwaves; see, for example, the
approach taken by Popovici ([92]).

Here, we introduce a variation on the fast marching method ([83]) which can be used to
suppress headwaves in many situations. The key idea is to build a filter in the fast marching
update procedure which represses headwave transmission; done carefully, one can remove
headwaves from the calculation. This can be done without a priori information about or
determination of the interface discontinuities. In Fig. 31, we show two calculations; the left

FIG. 31. Suppression of headwaves.



546 J. A. SETHIAN

FIG. 32. Suppression of headwaves by a diagonal structure.

figure is the true first arrival, while the right figure shows suppression of headwaves. In
Fig. 32, we show that the results do not depend on the orientation of the discontinuities;
again, the left figure is the true first arrival, while the right figure shows suppression of
headwaves. Finally, in Fig. 33, we show headwave suppression against a curved boundary
interface; the interior of the circle is a faster material. For further details, see Sethian [83].

9. Optimal Structural Boundary Design

The third application of these methodologies concerns the boundary design of a loaded
elastic structure. The goal is to find efficient designs which satisfy certain constraint equa-
tions while minimizing other variables, such as the total weight. These results and discussion
are taken from Sethian and Wiegmann [88]; we refer the interested reader to that work for
considerably more detail, explanations, and examples.

By way of illustration, consider a clamped and loaded cantilever (see Fig. 34). Suppose
our goal is to remove as much material as possible from the original shape, while still making
sure that the compliance (defined as the yield under the load) or the maximal stress in the
structure stays below a certain threshold value. We can start with the original perforated
structure and compute the stress; as illustration, the stress contours on the original design
are shown in Fig. 35. We can then try to add and remove material in order to reduce the
weight in such a way that the compliance or stress does not rise above a given user-prescribed
level. Different designs (that is, newly introduced, removed, or reshaped holes) will give
different compliance and stresses in the design. Our approach is to devise a systematic way

FIG. 33. Suppression of headwaves by a circular structure.
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FIG. 34. Bending of the initial design of a cantilever with 105 circular holes. Parts of the left boundary are
clamped; on the rest of the boundary, including all holes, the traction is specified, with nonzero loading on a
small portion about the center of the right boundary. The bending is beyond the regime of small-displacement
elastostatics and chosen only to illustrate the behavior. The larger rectangle is the computational domain, with a
320× 160 grid indicated in the lower left corner.

to add and remove material. This requires an accurate technique to compute the stresses for
a given multiply connected domain and an accurate technique to remove or reshape existing
boundaries and to introduce new ones. We use the narrow-band level set method to add and
subtract material, and a version of theexplicit jump immersed interface methodto compute
the stress in arbitrary domains.

Our goal is to find a design configuration that minimizes the total weight while keeping
the compliance below a certain prescribed value.

9.1. Overview of Computational Approach

As a general outline, the algorithmic approach is as follows:

• In the first step, the explicit jump immersed interface method is applied to the equations
of 2D linear elastostatics in the displacement formulation. These problems on arbitrary
domains are solved quickly and without mesh generation by domain embedding and the use
of fast elastostatic solvers. In brief, in [88] a general technique is given for solving the linear

FIG. 35. Stress contours for initial configuration shown in Fig. 34.
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elastostatic equations in the displacement formulation and differencing the displacements.
This explicit jump immersed interface method (see [100]) is a finite difference technique
on uniform grids, after LeVeque and Li’simmersed interface method([42]), that is capable
of dealing with non-grid-aligned boundaries with the same truncation error as interior
differences. The biggest benefit of this approach is that it is easy to add material (with
some subgrid resolution) at hole boundaries with high stress. In particular, this approach
allows one to start with designs that have holes cut “in the wrong place,” and see these holes
disappear.
• In the second step, the given design is modified. The narrow-band level set method is

used to alter the shape, with velocities depending on the stresses in the current design. These
stresses can be found from the displacements that were found in the first step. Boundary
motion and merging as well as the introduction of new holes are all performed using this
grid function. This approach also allows the detection of regions that have become separated
from the nontrivial boundary conditions and have to be dropped from the computations.
Criteria are provided for advancing the shape in an appropriate direction and to correct the
evolving shape when given constraints are violated.

The goal is to solve the two-dimensional Lam´e equations, whereu = (u, v) are the
displacements inx andy, respectively, and

−µ(1u+ uxx + vxy)− λ(uxx + vxy) = f u in Ä,
(24)

−µ(1u+ uxy+ vyy)− λ(uxy+ vyy) = f v in Ä.

Hereµ andλ are the Lam´e constants,f = ( f u, f v) are body forces, andÄ is an open,
connected but not necessarily simply connected domain. We will also write (withC =
µ/(µ+ λ))

C1u+ uxx + vxy = − f u

µ+ λ in Ä,
(25)

C1v + uxy+ vyy = − f v

µ+ λ in Ä.

Displacement boundary conditions are

u = ū on01 ⊂ ∂Ä. (26)

Here ū = (ū, v̄)T are given functions on01, the part of∂Ä, the boundary ofÄ, where
displacements are given. Traction boundary conditions are

σ(u)n = g on02 ⊂ ∂Ä. (27)

One assumes that the coefficients, geometry, and boundary values are such that the problem
has a unique solution.

For concreteness, we may think of Eq. (27) as realized in Cartesian coordinates. Then
u = (u, v) is the vector of displacements in thex and y directions,σ is the stress tensor
expressed in(x, y) coordinates,n = (n1, n2) is the inward normal to the boundary (given
in (x, y) coordinates), andg is the vector of surface forces applied at that boundary, also
given in(x, y) coordinates.
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We solve for the displacements and difference them to find the (symmetric) stress tensor,
with Lamé constantsµ andλ,

σ = µ(∇u+∇uT)+ λ trace(∇u)I .

From the stress tensor, we can then calculate the von Mises stress as

S=
√
σ 2

11+ σ 2
22− σ11σ22+ 3σ 2

12.

We extend the von Mises stress from the grid to the boundaries by a least-squares extrap-
olation method. This provides us with a velocity fieldF defined away from the interface
with which to advance the level set function.

9.2. Brief Technical Comments

9.2.1. Problem setup and elliptic issues.Mesh generation issues are avoided by sepa-
rating the representation of the boundary from the uniform computational grid. To keep the
data structures simple and to allow use of fast elastostatic solvers on rectangular domains
[99], the problem is posed on a larger, rectangular domainR with zero normal boundary
conditions. The boundary conditions on the original boundary are rewritten as jump condi-
tions that introduce discontinuities in the displacements insideR. The choice of jump and
boundary conditions forces the extended solution to vanish on the extension but to match
the solution inside the structure. On the level of the linear algebra, a Schur-complement
(as previously used, e.g., in [43, 100]) reduces the number of variables from proportional
to the grid points to proportional to the length of the boundary normalized by the mesh
width. We also note that in [88], derivative estimation and corrections are carried out to
third order for the purpose of achieving anO(h2) truncation error at all points, including
points neighboring the boundary; in addition, the work introduces a fast elastostatic solver
which is of considerable use in its own right. For details, see [88].

9.2.2. Design alteration. Once the displacement and stresses are found, this yields a
velocity field which may be extended to the nearby level set grid points to advance the
interface. The motion of this interface corresponds to removal material in regions of low
stress and to added material in regions of high stress. The removal rate determines the closed
stress contours along which new holes are cut and also the velocity of the boundary motion.
It is increased only after no new holes are cut and the design boundaries have stabilized.
When the constraint is violated, the removal rate is decreased to add more material in regions
of high stress and remove less material in regions of low stress. The approach in [88] uses
a narrow-band level set method to update the interface and the various holes, as well as an
extension velocity formulation to move the neighboring level sets. We terminate when this
procedure can no longer improve the weight while satisfying the compliance.

9.2.3. Algorithm flow. The algorithmic flow is as follows:

MAIN ALGORITHM

1. Initialize; find stresses in initial design.
2. While termination criteria are not satisfied do

a. Cut new holes.
b. Move boundaries.
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c. Find displacements, stresses, etc.
d. If the constraints are violated reduce removal rate of material and revert to previous

iteration.
e. Update removal rate.

Thus, the methodology presented in [88] attacks optimal design problems with hard
constraints using a evolutionary approach based on calculating derivatives, displacements,
and stresses associated with solving the associated relevant elliptic problems.

We shall not go any further into the derivation of the appropriate jump conditions nor
the algorithmic details of the explicit immersed interface method and refer the reader to the
original work in [88].

9.3. Results

We show two results from [88]. First, we study the constrained design of a short cantilever.
A cantilever of ratio 1 : 3 is clamped everywhere on the left boundary and vertically loaded
on the mid 6% of the right boundary. The rest of the right boundary and the top and bottom
boundaries are traction free. The problem was chosen because it is a standard test problem
for structural topology design, (for example, see [61, 101]), with a known solution for a
simpler pin-jointed two-truss problem [62]. The optimal height in that case is twice the
width of the structure.

In Fig. 36a, taken from [88], we show clamping, loading, and stresses in the initial design.
Figure 36b shows the improved design under the combination explicit jump immersed
interface method and the narrow-band level set method.

In a different calculation, Fig. 37 shows the design of a long cantilever from a perforated
structure. From theoretical considerations [6, 12], a truss-like structure is expected to de-
velop for certain optimal low-weight structures. To give the flavor of one such simulation,
we show the time sequence of the truss evolution. Again, for complete details on equations
of motion, numerical schemes, measurement tests, and additional examples, see the original
work [88].

FIG. 36. Improved shape for short cantilever. (a) Stress distribution in initial design; (b) improved design.
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FIG. 37. Evolution of truss structure.
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